Design and evaluation of genome-wide libraries for RNAi screens

نویسندگان

  • Thomas Sandmann
  • Michael Boutros
  • Thomas Horn
چکیده

This peer-reviewed article was published immediately upon acceptance. It can be downloaded, printed and distributed freely for any purposes (see copyright notice below). which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT RNA interference screens have enabled the systematic analysis of many biological processes in cultured cells and whole organisms. The success of such screens and the interpretation of the data depend on the stringent design of RNAi libraries. We describe and validate NEXT-RNAi, a software for the automated design and evaluation of RNAi sequences on a genome-wide scale. NEXT-RNAi is implemented as open-source software and is accessible at 3 RATIONALE RNA interference (RNAi) screens have become an important tool for the identification and characterization of gene function on a large-scale and complement classic mutagenesis screens by providing a means to target almost every transcript in a sequenced and annotated genome. RNAi is a post-transcriptional gene silencing mechanism conserved from plants to humans and relies on the delivery of exogenous short double-stranded (ds) RNAs that trigger the degradation of homologous mRNAs in cells [1, 2]. As an experimental tool, RNAi is now widely used to silence the expression of genes in a broad spectrum of organisms [3]. The availability of genome-wide RNAi libraries for cell-based assays and whole organisms has opened new avenues to query genomes for a broad spectrum of loss-of-function phenotypes [4, 5]. The number of sequenced genomes is steadily rising, enabling reverse genetic approaches using RNAi in many novel model systems, including e.g. the medically relevant vector Anopheles gambiae and species used to study evolutionarily aspects of development such as Tribolium castaneum, Acyrthosiphon pisum and Schmidtea mediterranea. RNAi libraries will facilitate the functional characterization of genes in these species, either through studying smaller subsets of candidates or on a genomic scale. The design of RNAi reagents is key for obtaining reliable phenotypic data in large-scale RNAi experiments. Several recent studies demonstrated that the degradation of non-intended transcripts (so-called " off-target effects ") and knock-down efficiency depend on the sequence of the RNAi reagent and have to be carefully monitored [6-13]. Based on experimental studies, rules for the design of RNAi 4 reagents have been devised to improve knock-down efficiency and simultaneously minimize unspecific effects. In invertebrates such as C. elegans and Drosophila RNAi can be triggered by long dsRNAs that are intracellularly broken down into short interfering (si) …

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GenomeRNAi: a database for cell-based RNAi phenotypes

RNA interference (RNAi) has emerged as a powerful tool to generate loss-of-function phenotypes in a variety of organisms. Combined with the sequence information of almost completely annotated genomes, RNAi technologies have opened new avenues to conduct systematic genetic screens for every annotated gene in the genome. As increasing large datasets of RNAi-induced phenotypes become available, an...

متن کامل

Generation of RNAi Libraries for High-Throughput Screens

The completion of the genome sequencing for several organisms has created a great demand for genomic tools that can systematically analyze the growing wealth of data. In contrast to the classical reverse genetics approach of creating specific knockout cell lines or animals that is time-consuming and expensive, RNA-mediated interference (RNAi) has emerged as a fast, simple, and cost-effective te...

متن کامل

Single-cell analysis of population context advances RNAi screening at multiple levels

Isogenic cells in culture show strong variability, which arises from dynamic adaptations to the microenvironment of individual cells. Here we study the influence of the cell population context, which determines a single cell's microenvironment, in image-based RNAi screens. We developed a comprehensive computational approach that employs Bayesian and multivariate methods at the single-cell level...

متن کامل

High-throughput RNAi screening for germline apoptosis genes in Caenorhabditis elegans.

Among the greatest tools that Caenorhabditis elegans can provide researchers are the capabilities to perform high-throughput, genome-wide screens. Using bacterial RNAi libraries, which cover the majority (>85%) of the worm genome, genes can be rapidly and systematically evaluated for apoptosis phenotypes in the germline. Screens can be designed to directly assess the levels of apoptotic corpses...

متن کامل

RNA Interference (RNAi) Screening in Drosophila

In the last decade, RNA interference (RNAi), a cellular mechanism that uses RNA-guided degradation of messenger RNA transcripts, has had an important impact on identifying and characterizing gene function. First discovered in Caenorhabditis elegans, RNAi can be used to silence the expression of genes through introduction of exogenous double-stranded RNA into cells. In Drosophila, RNAi has been ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010